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ABSTRACT

Question answering tasks have shown remarkable progrésslistributed vec-

tor representation. In this paper, we investigate the ticenoposed Facebook
bAbI tasks which consist of twenty different categories oéstions that require
complex reasoning. Because the previous work on bAbl arenalito-end mod-

els, errors could come from either an imperfect understandf semantics or in

certain steps of the reasoning. For clearer analysis, wgogetwo vector space
models inspired by Tensor Product Representation (TPRgitfimpn knowledge

encoding and logical reasoning based on common-sensernaer They together
achieve near-perfect accuracy on all categories incluglrsitional reasoning and
path finding that have proved difficult for most of the pre\d@pproaches. We
hypothesize that the difficulties in these categories aretduhe multi-relations

in contrast to uni-relational characteristic of other gatées. Our exploration
sheds light on designing more sophisticated dataset anthmowne step toward
integrating transparent and interpretable formalism dRTfto existing learning

paradigms.

1 INTRODUCTION

Ideal machine learning systems should be capable not onlgaofiing rules automatically from

training data, but also of transparently incorporatingtmg principles. While an end-to-end frame-
work is suitable for learning without human interventioristing human knowledge is often valu-
able in leveraging data toward better generalization toehput. Question answering (QA) is

one of the ultimate tasks in Natural Language ProcessindPjMin which synergy between the two
capabilities could enable better understanding and ré&agon

Recently the Facebook bAbl tasks were introduced to evak@nplex reading comprehension via
QA (Weston et al. (2015)); these have received considemtdation. Understanding natural ques-
tions, for example in WebQuestions tasks (Berant et al. 3p0fequires significant comprehension
of the semantics, yet reasoning out the answers is theivelasimple (e.g., Bordes etlal. (2014);

*This research was conducted while the first author held a mmternship in Microsoft Research, Red-
mond, and the last author was a Visiting Researcher there.
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Yih et all (2015)). In contrast, the synthetic questionsAbbrequire rather complex reasoning over
multiple computational steps while demanding only miniainantic understanding. As the pre-
vious work on bAbl consists only of end-to-end models (Wesbal. (2014); Kumar et al. (2015);
Sukhbaatar et al. (2015); Peng et al. (2015)), it is uncldaether incorrect answers arise from an
imperfect semantic understanding, inadequate knowledgeding, or insufficient model capac-
ity (Dupoux (2015)). This is partly because the current gapas based on neural networks have no
interpretable intermediate representations which meslel@n use to assess the knowledge present
in the vectorial encoding of the system’s understandindhefihput sentences. Our approach, in
contrast, can illuminate what knowledge is caputred in eaghesentation via the formalism of
TPR.

Tensor Product Representation (TPR), proposed by Smale(i€g00); Smolensky & L egendre
(2006), is a mathematical method to represent complextsires from basic vectorial building
blocks, so calledillers androles. For example, one can encode a binary tredibogingfiller vec-
tors corresponding to the left- and right-child entitiesdte vectors corresponding to the ‘left child’
and ‘right child’ positions, respectively. Arbitrary treean be represented by recursively applying
the same method. As an outer product (i.e., tensor prodeatizes the binding operation, both
filler and role components are decodable from the resulépgasentation via the inner product; this
is calledunbinding TPR is known to be capable of various applications suchessdperations,
grammar processing and lambda-calculus evaluztion (Sreloye2012)).

In this paper, we endeavor to disentangle the problem gleéatd semantic parsing, knowledge
encoding, and logical reasoning. Proposing two vectocspaodels inspired by TPR, we first pro-
vide an in-depth analysis of the bAbl dataset by clustetiraged solely on their logical properties,
the twenty question categories defined by bAbl. Such arsabmsables us to conjecture why most
existing models, in spite of their complexity, have failedachieve good accuracy qositional
reasoningandpath findingtasks, whereas Peng et al. (2015) achieved successfukrdstiie bAbl
tasks turn out to be considerably simpler than intendeddarltiimate purpose of providing a major
step towards “Al-complete question answering”, then mdailb@rated tasks will be required to test
the power of proposed QA models such as memory networks.

As a further contribution, we also develop the foundatiom dfieory that maps inference for log-
ical reasoning to computation over TPRs, generalizing oadets under the rigorous TPR for-
malism. Due to the page limit, this theoretical foundatisiélegated to the supplementary ma-
terials (Smolensky et al. (2016)). The experimental resstiow that accurate inference based on
common-sense knowledge is transparently attainable snftimimalism. We hope our exploration
can contribute to the further improvement of end-to-end el®tbward the transparency and inter-
pretability. To the best of our knowledge, our in-depth gel of bAbl and of logical reasoning
over distributed vectorial representations are each thedirtheir kind.

2 REeLATED WORK

Since the seminal work of Bengio et al. (2003), researchears paid increasing attention to various
distributed representations in continuous vector spateshe computer science literature, Skip-
gram/CBoW |(Mikolov et al.[(2013)) and GloVe (Penningtonlef{2014)) are popular models that
are trained based on the distributional similarities in dvoo-occurrence patterns; they have been
frequently utilized as initial embeddings for a variety dfier NLP tasks. In the cognitive science
literature, on the other hand, BEAGLE (Jones & Mewhort (2p@nd DVRS |(Ustun et al. (2014))
are trained differently, with random initializations anidcalar convolution. They assign two vec-
tors for each word: an environmental vector to describe ighl/properties and a lexical vector to
indicate meaning.

Whereas such representations are known to provide a usefultavincorporate prior linguistic
knowledge, their usefulness is not clear for reasoningrdeid tasks. In other contexts, Grefenstette
(2013) shows how to simulate predicate logic with matricestansors. Similarly, Rocktaschel et al.
(2014) try to find low-dimensional embeddings which can nidaist-order logic in a vectorial
manner. These models are only concentrated on generalpgogiitems without considering NLP
tasks. Note that vectorial encodings are necessary in maghime learning models such as neural
networks. Reasoning based on linguistic cues in vectorespa@uely characterizes our paper
among these relevant work.
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Category 1: Single Supporting Fac

Category 3: Three Supporting Facts

01:
02:
03:

Mary moved to the bathroom.
John went to the hallway.
Where is MaryDathroom

Category 2: Two Supporting Facts

: Mary dropped the football.
: Mary journeyed to the kitchen.

: Where is the football@arden

. Sandra went back to the hallway.
: Daniel took the apple.
: John travelled to the kitchen.

04: Daniel went back to the hallway. | 04: Daniel travelled to the bedroom.
05: Sandra moved to the garden. 05: Daniel got the football there.
06: Where is DanielPallway 06: Daniel went to the hallway.
07: Where was the apple before the hallwég?lroom

: Mary went back to the bedroom.

01: Mary went to the kitchen. 09: Daniel discarded the football.

02: Sandra journeyed to the office.| | 10: Daniel got the football.

03: Mary got the football there. 11: Mary went to the garden.

04: Mary travelled to the garden. 12: Daniel travelled to the office.

05: Where is the footballgarden 13: Daniel went back to the bedroom.

06: John travelled to the office. 14: Where was the football before the bedroonfitce
07: Sandra moved to the garden. 15: Daniel went back to the hallway.

08: Where is the footballgarden 16: Mary went back to the bathroom.

: Daniel dropped the apple.
: Sandra journeyed to the kitchen.
: Where was the apple before the officeflway

Figure 1: Sample statements(black), questions(blueyvensgred), and clues(green) for Categories
1,2,and 3.

The tasks in bAbl have been studied mainly within the contéxihe Memory Network (MemNN)
model, which consists of an array of representations cattemory” and four learnable modules:
the I-module encodes the input into feature representatienG-module updates relevant memory
slots, the O-module performs inferences to compute ougaitifes given the input representation
and the current memory, and finally the R-module decodesutpmubfeature-based representation
to the final response. Since the proposal of the basic MemN&s{dM et al.l[(2014)) model, the
Adaptive/Nonlinear MemNN[_(Weston et/al. (2015)), DMN_(Kunghal. (2015)), and MemN2N
(Sukhbaatar et al. (20115)) models have been developed ingazertain parts of these modules.
Nonetheless, none of these models except Peng et al. (20d&gssfully accomplish either posi-
tional reasoning or path finding tasks. Our speculation atteuperformance by Peng ef al. (2015)
will be given in a later section based on our bAbl analysis.

3 MODELS AND ANALYSIS

The bAbl dataset consists of twenty different types of goastwhere each question category is
claimed to be atomic and independent from the others (Westtalh (2015)). In this section, we
investigate clusters of categories with sample QA probjemalyzing what kinds of logical proper-
ties are shared across various types. We also elucidat] basour vector space models, why it is
difficult to achieve good accuracy on certain categoriesitjpmal reasoning and path finding.

3.1 CONTAINEE-CONTAINER RELATIONSHIP

Supporting Facts (1, 2, 3) The first three question categories of bAbl ask for the cumweprevi-
ous locations of actors and objects based on the statenieatsgior to the question. Category 1-3
guestions respectively require precisely one, two, orglstgoporting facts to reason out the proper
answers. Figurgl1 illustrates sample statements and gonssktracted from real examples in the
training set. Reasoning in Category 1 implicitly requiresraple common-sense reasoning rule that
“An actor cannot exist in two different locations at the satinge.” In order to answer the questions
in Category 2, we implicitly need another rule tlian object that belongs to an actor follows its
owner’s location.” Further, if an item is dropped at one particular locatiomjiit permanently stay

in that location until someone grabs it and moves around ivigter.

While two independent relationgick/dropandmove seem to be involved in parallel in the Category
2 tasks, these questions can be all uniformly answered uhdéransitivity ofa containee belongs
to a container If an actor moves to a location, he/she (a containee) noanigel to that location
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(a container). Similarly, if an actor acquires an objecg item (a containee) newly belongs to
that actor (a container). Transitivity then logically ings that the object belongs to the location
occupied by the owner.

# StatementsDuestions Relational Translations/Answers Encodings/

1 Mary went to the kitchen. Mary belongs to the kitchen (from nowhere). mk” m(kon)”
3 Mary got the football there.  The football belongs to Mary. fmT  fmT

4 Mary travelled to the garden. Mary belongs to the garden (from the kitchenyng” m(go k)T
5 Where is the football? garden

9 Mary dropped the football.  The football belongs to where Mary belongs tgg”  fg”

10 Mary journeyed to the kitchenMary belongs to the kitchen (from the gardenynk” m(ko g)7
11 Where is the football? garden

Table 1: Sampleontainee-belongt-containertranslations and corresponding encodings about
Mary from Category 2. Symbols in encodings aredatlimensional vectors for actors:ary), ob-
jects (football), and locationsowhere kitchen,garden). Translations and encodings for Category
3 are also specified with the parentheses and circle operagispectively.

Knowing that every actor and object is unique without any @muity, one can encode such
containee-conatainer relationships by the following madéing distributed representations. As-
sume all entities: actors, objects, and locations are septed byd-dimensional unit vectors in
R[] Then each statement is encoded by a second-order tensorafdk)nin which the con-
tainee vector is bound to the container vector via the furetaat binding operation of TPR, the
tensor (or outer) proddt— in tensor notation(containe¢ ® (containey, or in matrix notation,
(containeg(containey” — and then stored in a slot in a memory. When an item is dropped,
perform an inference to store the appropriate knowledgesimory. For the example in Talle 1, the
container of the football at Statement 9 — the garden — isrdeted after figuring out the most
recent owner of the football, Mary; transitivity is implented through simple matrix multiplica-
tion of the encodings of Statement 3 (locating the foottzail) Statement 4 (locating the football's
current owner, Mary):

(fm") - (mg") = f(m™ - m)g" = fg"  (-m'm=|m|=1)

Finally, Category 3 asks the trajectory of items considgtiire previous locations of actors. Thus the
overall task is to understand the relocation sequence ¢f @etor and from this to reconstruct the
trajectory of item locations. Whereas MemNNs introduce@dditional vector for each statement
for encoding a time stamp, we define another binding operatiaR? x R? —s R?. This binding
operation maps a pair ofiext, prev) location vectors into d-dimensional vector via @ x 2d
temporal encoding matrii like the following:

nOp:U[Z} e R%

In Table1, the second expression in the Encodings colunuifigsetemporal encodings that identify
location transitions: Statement 4, translatedviesy belongs to the garden (from the kitchgei)
encoded as(gok)?. We can now reason to the proper answers for the questiongunefl by the
following inference steps, using basic encodings (for C12&) &nd temporal encodings (for C3):

C1. Where is Mary?
(@) Left-multiply bym™ all statements prior to time 3. (Yields - m”b”, m” - jhT))
(b) Pick the mostrecent container where 2-norms of the plidétions in (a) are approximately
1.0. (Yieldsb™; m™j is small.)
(c) Answer by finding the location corresponding to the representation=- bathroom
C2. Where is the football?

Topologically speaking, the unit hypersphere can be cootsd by adding one more point (“at infinity”)
to Euclidean space. Thus sampling from the hypersphererdudsnit the generality of representations.
2In TPR terms, the containee corresponds to a filler, and th&teer corresponds to a role.



Published as a conference paper at ICLR 2016

(a) Left-multiply by f7 all statements prior to the current time. (Yiel@l§ - mk”, fT - so”,
frefm®, 1 mg™)
(b) Pick the mostrecent container where 2-norms of the plidétions in (a) are approximately
1.0. (Yieldsm™.)
(c) If the container is an actor (e.g., Mary in statement 3),
¢ Find the most recent container of the actor by left-muliipdyby m” (Yields g”.)
e Answer by the most recent container. garden for the questions at time 5 and 8.
(d) If the container is a location (e.g., garden in staterS¢nsimply answer by the container.
C3. Where was the apple before the hallway?
(@) Left-multiply bya® all existing temporal encodings prior to time 7. (Yields- s(h o n)T,
at -adt, ... )
(b) Pick the earliest container (the start of the trajegtosy Danielin statement 2.
(c) Find the containers of Daniel by left-multiplying k¥ the temporal encodings between
time 2 and 7. (Yields!” - ad”, d” - j(kon)T,d" -d(bon)T,d" - fd*,d" -d(hob),....)
(d) By multiplying by the pseudo-invergé’, unbind2d-dimensional vectors between time 4
and 7. (YieldsUT (b o n) = [b;n], then[h; b].)
(e) Reconstruct the item trajectory in sequeneenowhere— bedroom— hallway
(f) Answer with (the most recent) location which is prior teethallway.= bedroom

Three Argument Relations (5) In this category, there is a new type of statement which §psci
ownership transfer: an actor gives an object to another.g8ioce now some relations involve three
arguments,qource-actoyobject target-acto), we need to encode an ownership trajectory instead
of a location trajectory.

# StatementsQuestions Relational Translations/Answers Encodings/
1 Jeff took the milk there. The milk belongs to Jeff (from None). m(j * n)”
2 Jeff gave the milk to Bill. The milk belongs to Bill (from Jeff). m(b* 5)T
3 Who did Jeff give the milk to? Bill

4 Daniel travelled to the office.  Daniel belongs to the office. do”

5 Daniel journeyed to the hallwayDaniel belongs to the hallway. dh™

6 Who received the milk? Bill

7 Bill went to the kitchen. Bill belongs to the kitchen. bkT

8 Fred grabbed the apple there. The apple belongs to Fred (from noney(f * n)”
9 What did Jeff give to Bill? milk

Table 2: Sampleontainee-belongto-containertranslations and corresponding encodings for an
example from Category 5. Symbols in encodings are-alimensional vectors for actorag¢body,
jeff, daniel,bill, fred), objectsiuilk, apple), and locationsoffice, kitchen)d

Analogously to the> operation used for Category 3, we realize theperation by defining a map
% : RY x RY — R%. This new binding operation maps a pair akkt, prev) owner vectors into a
d-dimensional vector via d x 2d matrix V' in the exactly same fashion:x p = V[n;p] € R%. Due
to the similarity in encoding, the inference is also analogio the inference for Category 3.

C5. Three questions of Talile 2?
(a) Find the owners of the milk by left-multiplying by” the encodings prior to time 3.
(b) Unbind the owner transitions by multiplying them by treepdo-inversé’ .
(c) Reconstruct the ownership trajectory for the mi#k.Nobody— Jeff— Bill
(d) Answer accordingly each question based on the trajgctor

Though no more complex examples or distinct categorie$ exibe dataset, it is clear that our en-
coding scheme is capable of inferring the full trajectonjtein location considering both relocation
of actors and transfers of ownership. In such cases, daiid « will be used at the same time in

3To avoid notational confusion, we modify the name of an afftom Mary to Daniel) and a location (from
the bathroom to the office) from the real example in Category 5
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Category 6: Yes/No Questions Category 7: Counting

01: Daniel went back to the hallway. 01: Mary took the apple there.

02: John got the apple there. 02: John travelled to the office.

03: Is Daniel in the hallway9yes 03: How many objects is Mary carryingthe

04: John dropped the apple. 04: Mary travelled to the bathroom.

05: Mary got the apple there. 05: Sandra went back to the bedroom.

06: Is Daniel in the hallway9yes 06: How many objects is Mary carryinghe

07: Daniel moved to the bedroom. 07: Mary got the football there.

08: Sandra travelled to the hallway. 08: Mary went to the office.

09: Is Daniel in the hallway?o 09: How many objects is Mary carrying®o
10: Mary passed the apple to John.

Category 8: List/Sets 11: Mary left the football.

01: Mary took the milk there. 12: How many objects is Mary carrying®ne

02: Mary went to the office.

03: What is Mary carryingPnilk Category 9: Simple Negation

04: Mary took the apple there. 01: Sandra travelled to the garden.

05: Sandra journeyed to the bedroom. 02: Sandra is no longer in the garden.

06: What is Mary carrying®nilk,apple 03: Is Sandra in the gardem®

07: Mary put down the milk. 04: Sandra is in the garden.

08: Mary discarded the apple. 05: Sandra journeyed to the hallway.

09: What is Mary carryingPothing 06: Is Sandra in the hallwayys

Figure 2: Sample statements(black), questions(blueyyens¢red), and clues(green) for Category
6, 7, 8, and 9. Answer types are different from the previotisgiaies.

encoding. (e.g., encoding for time 5 will be théfh o 0)”. Note also that there may be multiple
transfers between the same pair of actors in a history pritire given question. While any of them
could be appropriate evidence to justify different answirs ground-truth answers in the training
set turned out to be all based on the most recent clues.

Answer Variations (6, 7, 8, 9) As shown in Figuré]2, the responses to questions of Categorie
6-9 require different measures of the inferred element. dxample, the statements in Category
6 are structurally equivalent to the statements in Cate@omyhile the questions concern only a
current location, similar to Category 1. However, each tjords formulated in a binary yes/no
format, confirming‘ls Daniel in the hallway?” instead of askingWhere is Daniel?”. Category

7 is isomorphic to Category 5 in the sense that actors canygckirop, and pass objects to other
actors. However, each question inquires the number of thmarently belonging to the given
actor. On the other hand, a response in Category 8 must givactival names of objects instead of
counting their number. The statements in this categoryasedbnot on Category 5, but on Category
2 which is simpler due to the lack of ownership transfer. lyastatements in Category 9 can contain
a negative quantifier such a®’ or ‘no longer’. Responses confirm or not the location of actors via
yes/no dichotomy as for Category 6. However, the overaty/stobased on the simplest Category 1.

Since answer measures are the only differences of theggocite from Category 1, 2, 3, and 5, no
additional encodings or inferences are necessary. Howinage are several caveats in formulating
actual answers: 1) For yes/no questions, we should knowrtheers must be eithgesor noin
advance based on the training examples. 2) When countinguiimder of belongings, the answer
must use English number words rather than Arabic numeralsiVtien enumerating the names
of belongings, names must be sequenced by their order ofsitiop. 4) A negative quantifier is
realized by binding the initial default locatiorowhereback to the given actor. Note that there is no
double negation.

Statement Variations (10, 11, 12, 13) Statements in Categories 10-13 contain more challenging
linguistic elements such as conjunctioas@/or or pronounslie/she/they While statements in
Category 10 is structurally similar to Category 1's, an acén be located ieitheroneor another
location. Due to such uncertainty, some questions must$feened indefinitely bymaybe’ On the
other hand, each statementin Category 12 can contain tewiipors conjoined byand’ to indicate

that these actors all carry out the action. Aside from suctjuretions, statements and questions
are isomorphic to Category 1's. Statements in Categoriés31dan consist of a singular/plural
pronoun to indicate single/multiple actors mentionediearSince coreference resolution is itself a
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Category 10: Indefinite Knowledge Category 11: Basic Coreference

01: Julie travelled to the kitchen. 01: Mary went back to the bathroom.

02: Bill is either in the school or the office. 02: After that she went to the bedroom.

03: Is Bill in the office?maybe 03: Where is Marybedroom

04: Bill went back to the bedroom. 04: Daniel moved to the office.

05: Bill travelled to the kitchen. 05: Afterwards he moved to the hallway.
06: Is Bill in the kitchen?es 06: Where is DanielPallway

Category 12: Conjunction Category 13: Compound Coreference

01: Daniel and Sandra went back to the kitchen. 01: Mary and Daniel went to the bathroom.
02: Daniel and John went back to the hallway. 02: Then they journeyed to the hallway.
03: Where is DanielPallway 03: Where is DanielPallway

04: Daniel and John moved to the bathroom. 04: Sandra and John moved to the kitchen.
05: Sandra and Mary travelled to the office. 05: Then they moved to the hallway.

06: Where is DanielPathroom 06: Where is JohnRallway

Figure 3: Sample statements(black), questions(blueyyenséred), and clues(green) for Category
10, 11, 12, and 13. Statement types are different from théqare categories.

difficult problem, all pronouns are limited to refer only tctars mentioned in the immediately prior
statement.

To encode conjunctions, we can still leverage the same rdetbonjoin two objects by another
bilinear binding operation : R? x R¢ — R?, and unbind similarly via the pseudo-inverse of
the corresponding matrix. In our implementation, everyesteent is encoded using such a binding
operation. For instance, the first two statements of thengBategory 10 example are encoded into
j(k = k)T andb(s x 0)T, with « encodingor. If two locations unbound from the target actor are
identical, we output a yes/no definite answer, whereas tfferdnt locations imply the indefinite
answermaybe’if one of the unbound locations matches the queried locat@n the conjunction
andin Category 12, exactly the same formalism is applicableémjoining actors instead. Whereas
a singular pronoun appearing at timhan Category 11 is simply replaced by the actor mentioned at
timet — 1, we also use-binding to provide the multiple coreference needed foeGaty 13. For
instance, the first statement in the given Category 13 exaisgincoded agn x d)b” and the same
encoding is substituted fahey’ to represent the actors in the following statement.

Deduction/Induction (15, 16, 18, 20) While the statements and questions in these categories seem
different at first glance, their goals are all to reason usirtgansitivity-like rule. Categories 15
creates a food chain among various animals, and Categoryeld&ya partial/total order of sizes
among various objects. Whereas inference in these two@d¢sgs deductive, Categories 16 and
20 require inductive inference. In all four categories, rgv@atement is easily represented by a
containee-container relation obeying transitivity. Fwstance, the Category 15 example of Figure
is encoded bymc?, wm?, cs”, sw?}. Then the answer for the first questidhvhat is Jessica
afraid of?” will be answered by left-multiplying these by the transpofg¢ = m and finding the
one whose norm is approximately 1.0, whichrig”. Thus the resulf” - (mc?) = mT (mc?) =
(mTm)c? = T produces the desired answeat. Similarly, in Category 18, if question encoding
(e.g.,“Does the chocolate fit in the box?= cb™) is achievable by some inner products of statement
encodings, the answer must fyes’, otherwise,;no’.

On the other hand, in Category 16, transitivity is appliatereely as @ontainer-containe&ashion.
For instance, “Lily is afion” is encoded by!”, whereas “Lily is green” is encoded dy”. In
encoding “x is-a Y”, we put the more general concept at thediele of the outer-product binding
YzT'; to encode “x has-property Z” we useZ”. This allows us to induce a property for the general
category Y based on the single observation of one of its mesnbia simple matrix multiplication,
just as transitive inference was implemented ab@¥€:) - (Ig”) = g™, meaningd' fion is green”
Similarly in Category 20, there exists precisely one staenwhich describes a property of an
actor (e.g.“Sumit is bored” = bsT). Then a statement describes the actor’s relocation (Sgmit
journeyed to the gardenz sg™), yielding an inductive conclusion by matrix multiplicati: “Being
boring makes people go to the garders (bsT) - (sg”) = bg”. The inductive reasoning also
generalizes to other actions (e.g., the reason for latastsct: Sumit grabbed the football= s f7,

is also being bored, becau@a™) - (sf7) = bf7).
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Category 15. Basic Deduction

. Mice are afraid of cats.
: Emily is a mouse.
- Wolves are afraid of mice.

: Gertrude is a sheep.

: What is Jessica afraid otat

: What is Emily afraid ofzat

: What is Jessica afraid otat

: What is Winona afraid of8heep

Category 18: Reasoning about Size

. The suitcase is bigger than the container.
: The container fits inside the box.
: The chest is bigger than the chocolate.

04: Cats are afraid of sheep. 04: The suitcase fits inside the box.
05: Winona is a cat. 05: The chest fits inside the box.

06: Sheep are afraid of wolves. 06: Does the chocolate fit in the boy@s
07: Jessica is a mouse. 07: Does the chocolate fit in the boy@s

: Does the box fit in the container®
. Is the box bigger than the chocolatgss
: Does the box fit in the chocolate?

: Julius is yellow.
: What color is Brianreen

Category 20: Reasoning about Motivations

- Sumit is bored.

Category 16: Basic Induction 02: Where will Sumit gogarden

01: Bernhard is a lion. 03: Yann is hungry.

02: Julius is a lion. 04: Where will Yann go’kitchen

03: Lily is a lion. 05: Yann went back to the kitchen.

04: Bernhard is green. 06: Why did Yann go to the kitchertftungry
05: Lily is green. 07: Sumit journeyed to the garden.

06: Brian is a lion. 08: Why did Sumit go to the garderdred
07: Greg is a swan. 09: Yann picked up the apple there.

08: Greg is gray. 10: Why did Yann get the applé®ingry

: Sumit grabbed the football there.
: Why did Sumit get the footballRored

Figure 4. Sample statements(black), questions(blueyyens¢red), and clues(green) for Category
15, 16, 18, and 20. Categories 15 and 18 create chains frortestwaaker to stronger/larger,
whereas Categories 16 and 20 from general ones to specific one

cats box
mice sheep suitcase chest
wolves container chocolate

Figure 5: The circular food chain (Category 16) and the phaider (Category 18) corresponding
to the examples in Figufé 4. The arrows implyaid-of andfits-insiderelations, respectively.

Prior Knowledge (4, 14) Though statements in Category 4 looks quite dissimilar ftbase in
the other categories, they can be eventually modeled by-eelational reasoning chain based on the
containee-container relation, provided we know thatth’ and‘south’ are opposite to each other.
Thus the first two statements in the first Category 4 exampkigare[® yield{ko”, gk™}, from
which we infer(gk™) - (ko™) = go™ “The office is north of the gardenWhile the questions are all
simple knowledge confirmation, note that a relational werg(‘east’) might never appear in the
prior statements, as illustrated in the second example &g@ay 4 in Figuré1l6. However the most
important point is that two non-collinear relations (e'garth’, ‘east’) never appear together in the
same example.

On the other hand, statements in Category 14 are no longenalogically ordered. In order to
infer a correct locational trajectory without repeatingtstments multiple times, we predefine four
vectors for each time stampjesterday, thisnorning, thisafternoon, and thigvening, and bind
location with the corresponding stamp instead of the prevlocation. For example, the encoding
for the statement at time 2 now becoméso m)? instead ofj(b o p)?. Knowing the correct order
of these four time stamps, which could be learned from thieitrg examples, we can easily reorder
by unbinding time stamps.
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Category 4. Two Argument Relation Category 17: Positional Reasoning

01: The office is north of the kitchen. 01: The triangle is above the pink rectangle.

02: The garden is south of the kitchen. 02: The blue square is to the left of the triangle.

03: What is north of the kitchen@ffice 03: Is the pink rectangle to the right of the blue
square?des

01: The kitchen is west of the garden.

02: The hallway is west of the kitchen. 01: The red sphere is below the yellow square!.

03: What is the garden east df2chen 02: The red sphere is above the blue square.
03: Is the blue square below the yellow squgre?

es

Category 14: Time Manipulation d

01: Yesterday Julie went back to the park. Category 19: Path Finding

02: Julie went to the bedroom this morning. 01: The bedroom is south of the hallway.

03: Bill journeyed to the cinema yesterday. 02: The bathroom is east of the office.

04: This morning Bill went back to the park. 03: The kitchen is west of the garden.

05: Where was Bill before the park™ema 04: The garden is south of the office.

06: This evening Julie went to the school. 05: The office is south of the bedroom.

07: This afternoon Julie went back to the park. 06: How do you go from the garden to the bed-

08: Where was Julie before the bedroopa2k room?n,n

Figure 6: Sample statements(black), questions(blueyyensgred), and clues(green) for Category 4,
14,17, and 19. Categories 4 and 17 contains two differemhples separated by a horizontal line.

3.2 MULTIPLE RELATIONSHIPS

Path Finding (19) Our goalin this category is to find the path from one locat@ariother location
in a Manhattan-grid-like sense. Note thatlifis north of B, andB is north ofC, then the right path
from A to C in grid must be'north, north’ rather than simplynorth’. We assume given four
d x d non-singular matriced/, E, W, S encoding four different directions satisfyidg = S—! and
E =W~ Then

# StatementsQuestions Translations/Answerd Encodings Seq
1 The bedroom is south of the hallway. Decidesb given the initialh. b= Sh [N
2 Thepathroom is east of the office. Defer until we know eithes or 3. 3 = Fo 3)
3 The kitchen is west of the garden. Defer until we know eithegor k. &k =Wy (5)
4 The garden is south of the office. Defer until we know eithes or g. g = So 4
5 The office is south of the bedroom. Decideso givenb. 0o=25b 2
6 How do you go from the garden to the bedroonm?n b= Xg (6)

Table 3: Sample multi-relational translations and coroesling encodings from Category 19. Sym-
bols in encodings are eithekdimensional object vectorsiéliway, bedroom,office, Sathroom,
garden kitchen) ord x d directional matrices{outh, Fast,IWest, North). The last column shows
the sequence of actual running order.

After initializing the first object in the right-hand side.ge, ‘hallway’) by a random vector, we
decide the rest of the object vectors in sequence by mukiglyhe directional matrix (or its
inverse in case that the right-hand side is unknown and tiihded side is known). In case
that both sides are unknown, we defer such a statement binguttinto a queue. In fact,
the solution pathX can be determined either by selecting, of all combinatidnsvo directions
{NN, NE, NW, NS, ... SN, SE, SW} SBe one which best satisfies= X ¢ (in the example of Table
[3) or by solving this equation based on iterative substingi Note also that we need to know that
(n, e, w, s) in the answers correspond to (north, east, west, soutspeotively, which could be
learned from training data.

Positional Reasoning (17) While this category could be seen similar to Path Findinghepues-
tion only asks a relative position between two objects. Rstance, if r is belows” , and” b is below
r", then the position of with respect tas must be simplybelow’ rather tharibelow, below: Even
if an object is mentioned to be left of another object, it cbibé also located in left-above or left-
below of another object. Due to these subtleties, we herptaddundant representations with four
d x d singular matrices A, B, L, R) corresponding to four directions: (above, below, leftht)g
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For this directional subsumption, in contrast to the namgslarity of the directional matrices for
Category 19, we now strictly enforce idempotency to theskioes (i.e., A" = ... = A2 = A # I).
Then we define the following foutd x 4d block matrices and encode each statement with these
matrices in the same manner as for Category 19.

A 0 0 I

B:

0

A= L=

cCOoO~NO
como

I
0
0
0

OO N~NO
OO O~
OO N~NO

0
0
0
R

~NO OO
o~No o
~NO OO
O~NO O

0 0 0 0 0
0 I 0 0 I
0 0 1 0 0

In this encoding, each of the fodrdimensional subspaces&f¢ plays a role of indicating relative
positions with respect to (above, below, left, right), ipdadently. Carrying out the encoding“af
is belows”, r = Bs, ensures that the componentsroind s differ only in the dimensions from
(d + 1) to 2d (from the B block of B); that is,r;, = sj, for k = 1, 3,4 (wheres; indicates the-th
d-dimensional sub-block of). This is actually inconsistent with the encoding“cefis abover”,
which demands that andr differ only in their first sub-block. Thus in order to determaiwhether
or nots is indeed above, it is necessary to check whether= Bss as well as whethey; = Ar;.

If either condition is satisfied, we can confifmis above ta’ . Similarly, horizontal relations must
be checked on both the third and foutdimensional sub-blocks.

4 EXPERIMENTAL RESULTS

We implement our models and algorithms under the analysengh the previous section. Due to
the small vocabulary (mostly less than or equal to four el@gmamong actors, objects, locations,
and actions) and non-ambiguous grammars, a simple depgngarsdl and basic named entity
recognition enable us to achieve 100% accurate semansimgai hen we translate every statement
into a representation based on the appropriate contaim@@iner or multiway relation, and then
store it in an array of memory slots. The logical reasoningrafemantic parsing and knowledge
representation no longer refers to the original text symsbol

Type C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Accuracy 100% 100% 100% 100% 99.3% 100% 96.9% 96.5% 100%  99%
Model MNN  MNN MNN MNN DMN MNN DMN DMN DMN SSVM
Type Cl1 C12 C13 C14 C15 C16 C17 C18 C19 C20
Accuracy 100% 100% 100% 100% 100% 100% 2% 95% 36% 100%
Model MNN MNN MNN DMN MNN MNN Multtask MNN MNN  MNN

Table 4: Best accuracies for each category and the modehtinatved the best accuracy. MNN
indicates Strongly-Supervised MemNN trained with the clumbers, and DMN indicates Dynamic
MemNN, and SSVM indicates Structured SVM with the corefeeeresolution and SRL features.
Multitask indicates multitask training.

In contrast to all previous models reported in TdHle 4, inl@&bwe also report test accuracy on

the training data to measure how well our models incorparatemon sense. Note that testing on
the training data is available because our training proeedaly parses the appropriate semantic
components such as actors, objects, locations, actiod$hariorms of answers without using given

answers and clues for tuning the model parameters.

Note that the imperfect accuracy in Category 16 is due to thieiguity of evidence. As given in
Figurel4, one can answer the colorBrian as‘yellow’ because the latest evidence tdlidius who

is a lion is yellow.Similarly, in Category 5, the 8th story consists of incotfieconsistent answers
at time 14 and 17 (for training), as they ignore the most recemership transfers and choose
some old history as ground-truth answers. (The 63rd anchlsi6ties in the test data also consist
of incorrect answers, at time 27 and 22, respectively) Otiien these two categories, we achieve
perfect accuracies performing common-sense operatidp®amepresentations in memory.

“We use Stanford Dependency Pargért p: // nl p. st anf or d. edu/ sof t war e/ st anf or d- dependenci es. sht m
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Type C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Training 100% 100% 100% 100% 99.8% 100% 100% 100% 100% 100%
Test 100% 100% 100% 100% 99.8% 100% 100% 100% 100% 100%
Type Cl1 C12 C13 C14 C15 C16 C17 C18 C19 C20
Training 100% 100% 100% 100% 100% 99.4% 100% 100% 100% 100%
Test 100% 100% 100% 100% 100% 99.5% 100% 100% 100% 100%

Table 5: Accuracies on training and test data on our modebsa@flieve near-perfect accuracy in
almost every category including positional reasoning atti finding.

As the experimental results show, there is a clear distindietween two sets of tasks. Tasks in
most categories can be modeled by a containee-contakeareliationship respecting a transitivity-
like inference rule, whose goals are to create a lineadk@rechain. On the other hand, positional
reasoning and path finding require multiple relationshipserg each corresponding pair (e.g., north
vs. south) has its own transitivity structure, operatindependently of other pairs (e.g. east vs.
west). We hypothesize that this difference poses a majécdify for most of Memory Network
models to perform an accurate inference for positionalmeiag) and path finding.

Recently, Neural Reasoner (NR) by Peng et al. (2015) imgrtve accuracy for these two difficult
categories by a large margin, achieving 97.9% and 87.0% whiey 10k training sef Different
from other memory network models, NR has multiple reasotaggrs. Starting from the initial
statements and questions, NR constructs new statemendggiastions at the next layer, and repeats
this process recursively over multiple layers. As both fimsal reasoning and path finding require
generating inferences from, and new versions of, relevatémments for each relationship (e.g.,
“x is north of ” can become “y is south of x”), the abilities teigerate new facts and to derive final
answers by integrating them from multiple relationshipsidde a key reason why NR is successful,
like our TPR-based reasoner. While NR in experiment is siregdlso that all new facts maintain
the same initial representations, the question repretsemtzhanges for each layer considering all
existing facts and the previously evolved question. Duééosimplicity of the task, we conjecture
that evolving representations of the question could bedeifft to comprise the key ingredient for
each multi-relationship. However, it seems that traininghsmultiple layers requires a large amount
of training data, yielding drastically different perfornee of NR on two different dataset sizes.

5 CONCLUSION

The major contributions of this paper are two-fold. Firsg throughly analyze the recently ac-
claimed bAbl question-answering tasks by grouping the tweategories based on their relational
properties. Our analysis reveals that most categoriepéyositional reasoning and path finding
are governed by uni-relational characteristics. As thase out to support inference in a similar
manner under transitivity, it could be dangerous to evaltla¢ capacity of network models based
only on their performance on bAbl. In contrast, two more diffi categories require the capability
of performing multi-relational reasoning, a capabilityiathis apparently missing in most previous
models. One could later develop a more sophisticated dateganeeds substantially harder reason-
ing by introducing multiple relationships. Second, we meptwo vector space models which can
perform logistic reasoning for QA with distributed repretions. While TPR has been used for
various problems such as tree/grammar encoding and lacdddalus evaluation, logical reasoning
is a new area of application that requires iterative prangssf TPRs. In subsequent work, we will
generalize the vector-space approach for multi-relatiprblems. We hope these studies shed light
on the viability of developing further reasoning models ethcan perform inference with existing
knowledge in an interpretable and transparent manner.

55 All accuracy values of various models reported in the erpemtal section of the present paper are based
on a 1k training set. Neural Reasoner achieves 66.4% anéolwtfn using the 1k dataset.
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